Scaling Effects on Morphing Structures: Preliminary Guidelines for Managing the Effects on a Case Study

Author:

Concilio Antonio1ORCID,Galasso Bernardino1ORCID,Ameduri Salvatore1

Affiliation:

1. CIRA, Italian Aerospace Research Centre, Via Maiorise, 81043 Capua, Italy

Abstract

The technique of morphing in aerospace engineering is a relatively new discipline targeting the improvement of aircraft performance, even through dramatic changes to some critical geometrical and mechanical features, to adapt aircrafts’ configurations to evolving operation conditions. The development path of morphing systems is complex and shall pass through articulated gates to prove its readiness level due to the concurrence of different disciplines and approaches. The characterization and demonstration of the concepts in a representative environment, such as wind tunnel test facilities, are some of the most relevant steps needed for the maturation of the engineering technique. The practical size limitations of test facilities usually impose the use of scaled models. In the case of morphing systems, whose architecture is strictly dependent on the available room, and whose performance is tightly correlated with the general structural stiffness, changes in dimensions may affect the overall behaviour significantly. Therefore, the adaptive design may change a lot until it arrives to the formation of completely different products. Transportability issues of certain architectural forms, as well as the different classes of vehicles, are also related to that aspect. The scope of this paper is to investigate the impact of some effects of scaling processes on certain features of a morphing system, particularly focusing on the stiffness parameters, for their impact on several features such as the load bearing capability and structural stability in both steady and dynamic conditions. As a case study, a rotorcraft blade segment integrated with torsional shape memory alloy (SMA) actuators was considered. Relevant numerical models were exploited to highlight the different evolution laws of the characteristic structural parameters vs. the referred scale factors. In this investigation, the axial, flap, lag bending, and torsion stiffnesses, as well as normal modes and stress levels, are considered. The achieved results confirm the complexity of attaining an effective reproduction of the targeted morphing architecture, as scaled configurations are considered. In spite of the unavoidable specificity of the analysis herein reported, it is believed that such attainments can have a general validity at least to some extent, and the outcomes may be exported to other morphing systems, at least as guidelines. This study took place within the European project SABRE (Shape Adaptive Blades for Rotorcraft Efficiency, H2020).

Funder

European Research Council

Publisher

MDPI AG

Subject

Control and Optimization,Control and Systems Engineering

Reference67 articles.

1. Raconteur (2023, July 09). Available online: www.raconteur.net/business-innovation/aviation-industry-soaring-into-the-future.

2. ICAO (2023, July 09). Available online: www.icao.int/sustainability/Pages/Economic-Impacts-of-COVID-19.aspx.

3. Civil aviation and the environmental challenge;Green;Aeronaut. J.,2003

4. SNC-Lavalin (2023, July 09). Available online: https://www.snclavalin.com/~/media/Files/S/SNC-Lavalin/download-centre/en/whitepaper/aviation-trends-white-paper-digital.pdf.

5. Allianz-Trade (2023, July 09). Available online: https://www.allianz-trade.com/en_global/news-insights/economic-insights/the-world-is-moving-east-fast.html.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3