L-DOPA and Droxidopa: From Force Field Development to Molecular Docking into Human β2-Adrenergic Receptor

Author:

Catte AndreaORCID,Biswas Akash DeepORCID,Mancini GiordanoORCID,Barone VincenzoORCID

Abstract

The increasing interest in the molecular mechanism of the binding of different agonists and antagonists to β2-adrenergic receptor (β2AR) inactive and active states has led us to investigate protein–ligand interactions using molecular docking calculations. To perform this study, the 3.2 Å X-ray crystal structure of the active conformation of human β2AR in the complex with the endogenous agonist adrenaline has been used as a template for investigating the binding of two exogenous catecholamines to this adrenergic receptor. Here, we show the derivation of L-DOPA and Droxidopa OPLS all atom (AA) force field (FF) parameters via quantum mechanical (QM) calculations, molecular dynamics (MD) simulations in aqueous solutions of the two catecholamines and the molecular docking of both ligands into rigid and flexible β2AR models. We observe that both ligands share with adrenaline similar experimentally observed binding anchor sites, which are constituted by Asp113/Asn312 and Ser203/Ser204/Ser207 side chains. Moreover, both L-DOPA and Droxidopa molecules exhibit binding affinities comparable to that predicted for adrenaline, which is in good agreement with previous experimental and computational results. L-DOPA and Droxidopa OPLS AA FFs have also been tested by performing MD simulations of these ligands docked into β2AR proteins embedded in lipid membranes. Both hydrogen bonds and hydrophobic interaction networks observed over the 1 μs MD simulation are comparable with those derived from molecular docking calculations and MD simulations performed with the CHARMM FF.

Publisher

MDPI AG

Subject

Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3