Advanced Data Processing of Pancreatic Cancer Data Integrating Ontologies and Machine Learning Techniques to Create Holistic Health Records

Author:

Manias George1ORCID,Azqueta-Alzúaz Ainhoa2ORCID,Dalianis Athanasios3,Griffiths Jacob4ORCID,Kalogerini Maritini3,Kostopoulou Konstantina5,Kouremenou Eleftheria1,Kranas Pavlos6,Kyriazakos Sofoklis5ORCID,Lekka Danae5,Melillo Fabio7,Patiño-Martinez Marta2,Garcia-Perales Oscar4ORCID,Pnevmatikakis Aristodemos5ORCID,Torrens Salvador Garcia8,Wajid Usman4,Kyriazis Dimosthenis1ORCID

Affiliation:

1. Department of Digital Systems, University of Piraeus, 18534 Piraeus, Greece

2. Facultad de Informática, Universidad Politécnica de Madrid, 28040 Madrid, Spain

3. Athens Technology Center S.A., 15233 Athens, Greece

4. Information Catalyst, S.L., 46800 Xàtiva, Spain

5. Innovation Sprint, 1200 Brussels, Belgium

6. LeanXscale, 28223 Madrid, Spain

7. Engineering Ingegneria Informatica SpA, 00144 Rome, Italy

8. Hospital de Denia Marina Salud S.A., 03700 Alicante, Spain

Abstract

The modern healthcare landscape is overwhelmed by data derived from heterogeneous IoT data sources and Electronic Health Record (EHR) systems. Based on the advancements in data science and Machine Learning (ML), an improved ability to integrate and process the so-called primary and secondary data fosters the provision of real-time and personalized decisions. In that direction, an innovative mechanism for processing and integrating health-related data is introduced in this article. It describes the details of the mechanism and its internal subcomponents and workflows, together with the results from its utilization, validation, and evaluation in a real-world scenario. It also highlights the potential derived from the integration of primary and secondary data into Holistic Health Records (HHRs) and from the utilization of advanced ML-based and Semantic Web techniques to improve the quality, reliability, and interoperability of the examined data. The viability of this approach is evaluated through heterogeneous healthcare datasets pertaining to personalized risk identification and monitoring related to pancreatic cancer. The key outcomes and innovations of this mechanism are the introduction of the HHRs, which facilitate the capturing of all health determinants in a harmonized way, and a holistic data ingestion mechanism for advanced data processing and analysis.

Funder

European Union

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3