Ensemble Extreme Learning Machine Method for Hemoglobin Estimation Based on PhotoPlethysmoGraphic Signals

Author:

Peng Fulai1,Zhang Ningling1,Chen Cai1,Wu Fengxia2,Wang Weidong3

Affiliation:

1. Medical Rehabilitation Research Center, Shandong Institute of Advanced Technology, Chinese Academy of Sciences, Jinan 250100, China

2. School of Basic Medical Sciences, Shandong University, Jinan 250012, China

3. Department of Biomedical Engineering, Chinese PLA General Hospital, Beijing 100853, China

Abstract

Non-invasive detection of hemoglobin (Hb) concentration is of great clinical value for health screening and intraoperative blood transfusion. However, the accuracy and stability of non-invasive detection still need to be improved to meet clinical requirement. This paper proposes a non-invasive Hb detection method using ensemble extreme learning machine (EELM) regression based on eight-wavelength PhotoPlethysmoGraphic (PPG) signals. Firstly, a mathematical model for non-invasive Hb detection based on the Beer-Lambert law is established. Secondly, the captured eight-channel PPG signals are denoised and fifty-six feature values are extracted according to the derived mathematical model. Thirdly, a recursive feature elimination (RFE) algorithm is used to select the features that contribute most to the Hb prediction. Finally, a regression model is built by integrating several independent ELM models to improve prediction stability and accuracy. Experiments conducted on 249 clinical data points (199 cases as the training dataset and 50 cases as the test dataset) evaluate the proposed method, achieving a root mean square error (RMSE) of 1.72 g/dL and a Pearson correlation coefficient (PCC) of 0.76 (p < 0.01) between predicted and reference values. The results demonstrate that the proposed non-invasive Hb detection method exhibits a strong correlation with traditional invasive methods, suggesting its potential for non-invasive detection of Hb concentration.

Funder

Project of Natural Science Foundation of Shandong Province

Taishan Industrial Experts Program, Major Basic Research Project of Shandong Natural Science Foundation

Key Research and Development Program of Shandong Province

Shandong Institute of Advanced Technology, Chinese Academy of Sciences

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3