Predictions of Aeroengines’ Infrared Radiation Characteristics Based on HKELM Optimized by the Improved Dung Beetle Optimizer

Author:

Qiao Lei1,Chen Lihai2,Li Yiwen3,Hua Weizhuo3,Wang Ping1,Cui You1

Affiliation:

1. Hebei Instrument & Meter Engineering Technology Research Center, Hebei Petroleum University of Technology, Chengde 067000, China

2. Beijing Stealth Technology Co., Ltd., Beijing 100083, China

3. Key Laboratory for National Defense Science and Technology on Plasma Dynamics, Air Force Engineering University, Xi’an 710038, China

Abstract

To solve the problems of high computational cost and the long time required by the simulation and calculation of aeroengines’ exhaust systems, a method of predicting the characteristics of infrared radiation based on the hybrid kernel extreme learning machine (HKELM) optimized by the improved dung beetle optimizer (IDBO) was proposed. Firstly, the Levy flight strategy and variable spiral strategy were introduced to improve the optimization performance of the dung beetle optimizer (DBO) algorithm. Secondly, the superiority of IDBO algorithm was verified by using 23 benchmark functions. In addition, the Wilcoxon signed-rank test was applied to evaluate the experimental results, which proved the superiority of the IDBO algorithm over other current prominent metaheuristic algorithms. Finally, the hyperparameters of HKELM were optimized by the IDBO algorithm, and the IDBO-HKELM model was applied to the prediction of characteristics of infrared radiation of a typical axisymmetric nozzle. The results showed that the RMSE and MAE of the IDBO-HKELM model were 20.64 and 8.83, respectively, which verified the high accuracy and feasibility of the proposed method for predictions of aeroengines’ infrared radiation characteristics.

Funder

Foundation Project of Key Laboratory of Defense Science and Technology

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3