A Tailor-Made, Mirror-Based Infrared Scanner for the Reflectography of Paintings: Development, Features, and Applications

Author:

Gargano Marco1ORCID,Viganò Daniele12,Cavaleri Tiziana34ORCID,Cavaliere Francesco1,Ludwig Nicola1ORCID,Pozzi Federica3ORCID

Affiliation:

1. Dipartimento di Fisica Aldo Pontremoli, Università degli Studi di Milano, Via Celoria 16, 20133 Milano, Italy

2. Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Milano, Via Celoria 16, 20133 Milano, Italy

3. Centro per la Conservazione ed il Restauro dei Beni Culturali “La Venaria Reale”, Via XX Settembre 18, 10078 Venaria Reale, Italy

4. Dipartimento di Economia, Ingegneria, Società e Impresa (DEIM), Università della Tuscia, Via del Paradiso 47, 01100 Viterbo, Italy

Abstract

Since infrared reflectography was first applied in the 1960s to visualize the underdrawings of ancient paintings, several devices and scanning techniques were successfully proposed both as prototypes and commercial instruments. In fact, because of the sensors’ small dimension, typically ranging from 0.1 to 0.3 megapixels, scanning is always required. Point, line, and image scanners are all viable options to obtain an infrared image of the painting with adequate spatial resolution. This paper presents a newly developed, tailormade scanning system based on an InGaAs camera equipped with a catadioptric long-focus lens in a fixed position, enabling all movements to occur by means of a rotating mirror and precision step motors. Given the specific design of this system, as the mirror rotates, refocus of the lens is necessary and it is made possible by an autofocus system involving a laser distance meter and a motorized lens. The system proved to be lightweight, low cost, easily portable, and suitable for the examination of large-scale painting surfaces by providing high-resolution reflectograms. Furthermore, high-resolution images at different wavelengths can be obtained using band-pass filters. The in-situ analysis of a 16th-century panel painting is also discussed as a representative case study to demonstrate the effectiveness and reliability of the system described herein.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3