Abstract
We propose a new deep learning network capable of successfully segmenting intervertebral discs and their complex boundaries from magnetic resonance (MR) spine images. The existing U-network (U-net) is known to perform well in various segmentation tasks in medical images; however, its performance with respect to details of segmentation such as boundaries is limited by the structural limitations of a max-pooling layer that plays a key role in feature extraction process in the U-net. We designed a modified convolutional and pooling layer scheme and applied a cascaded learning method to overcome these structural limitations of the max-pooling layer of a conventional U-net. The proposed network achieved 3% higher Dice similarity coefficient (DSC) than conventional U-net for intervertebral disc segmentation (89.44% vs. 86.44%, respectively; p < 0.001). For intervertebral disc boundary segmentation, the proposed network achieved 10.46% higher DSC than conventional U-net (54.62% vs. 44.16%, respectively; p < 0.001).
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献