Fine-Grain Segmentation of the Intervertebral Discs from MR Spine Images Using Deep Convolutional Neural Networks: BSU-Net

Author:

Kim Sewon,Bae Won,Masuda KoichiORCID,Chung Christine,Hwang Dosik

Abstract

We propose a new deep learning network capable of successfully segmenting intervertebral discs and their complex boundaries from magnetic resonance (MR) spine images. The existing U-network (U-net) is known to perform well in various segmentation tasks in medical images; however, its performance with respect to details of segmentation such as boundaries is limited by the structural limitations of a max-pooling layer that plays a key role in feature extraction process in the U-net. We designed a modified convolutional and pooling layer scheme and applied a cascaded learning method to overcome these structural limitations of the max-pooling layer of a conventional U-net. The proposed network achieved 3% higher Dice similarity coefficient (DSC) than conventional U-net for intervertebral disc segmentation (89.44% vs. 86.44%, respectively; p < 0.001). For intervertebral disc boundary segmentation, the proposed network achieved 10.46% higher DSC than conventional U-net (54.62% vs. 44.16%, respectively; p < 0.001).

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3