A Study on the Contact Pressure and Thermo-Elastic Behavior of a Brake Disc-Pad by Infrared Images and Finite Element Analysis

Author:

Goo Byeong-ChoonORCID

Abstract

To understand the tribological characteristics of a frictional brake system, it is very important to measure the contact pressure between the brake disc and pads. But until now there have been no direct methods by which to measure the contact pressure. In this study, an attempt to indirectly estimate the contact pressure is proposed. Infrared thermal images and finite element analysis were used as tools. For the thermo-elastic finite element analysis, uniform, linear, quadratic, and quartic heat flux profiles in the radial direction were applied on the disc surface. Thermal and stress fields were obtained under various conditions in the disc fixing holes and on the contact faces of the two half discs. From the numerical results, it was found that the effect of the boundary conditions on the magnitude of thermal stress was about 10%. Numerical temperature data in the radial direction could be curve-fitted to functions with the same order as the heat flux profiles. The coefficients of correlation of the curve-fittings were more than 0.91. It could be concluded that using temperature profiles obtained with an infrared camera, contact pressure distributions on the disc surface could be inferred.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3