Pattern Recognition of Human Postures Using the Data Density Functional Method

Author:

Huang Shin-Jhe,Wu Chi-Jui,Chen Chien-ChangORCID

Abstract

In this paper, we propose a new approach to recognize the motional patterns of human postures by introducing the data density functional method. Under the framework of the proposed method, sensed time signals will be mapped into specific physical spaces. The most probable cluster number within the specific physical space can be determined according to the principle of energy stability. Then, each corresponding cluster boundary can be measured by searching for the local lowest energy level. Finally, the configuration of the clusters in the space will characterize the most probable states of the motional patterns. The direction of state migration and the corresponding transition region between these states then constitute a significant motional feature in the specific space. Differing from conventional methods, only a single tri-axial gravitational sensor was employed for data acquirement in our hardware scheme. By combining the motional feature and the sensor architecture as prior information, experimental results verified that the most probable states of the motional patterns can be successfully classified into four common human postures of daily life. Furthermore, error motions and noise only offer insignificant influences. Eventually, the proposed approach was applied on a simulation of turning-over situations, and the results show its potential on the issue of elderly and infant turning-over monitoring.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3