Author:
Li Yiting,Huang Haisong,Xie Qingsheng,Yao Liguo,Chen Qipeng
Abstract
This paper aims to achieve real-time and accurate detection of surface defects by using a deep learning method. For this purpose, the Single Shot MultiBox Detector (SSD) network was adopted as the meta structure and combined with the base convolution neural network (CNN) MobileNet into the MobileNet-SSD. Then, a detection method for surface defects was proposed based on the MobileNet-SSD. Specifically, the structure of the SSD was optimized without sacrificing its accuracy, and the network structure and parameters were adjusted to streamline the detection model. The proposed method was applied to the detection of typical defects like breaches, dents, burrs and abrasions on the sealing surface of a container in the filling line. The results show that our method can automatically detect surface defects more accurately and rapidly than lightweight network methods and traditional machine learning methods. The research results shed new light on defect detection in actual industrial scenarios.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
217 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献