Abstract
In this work, the authors present a feed-forward control system for two-phase microfluidic processes, widely adaptable for system-on-chip control in a wide variety of bio-chemical experimental conditions, in which two fluids interact in a micro-channel. The proposed approach takes advantage of the optical monitoring of the slugs flow and the on-line signal processing in the frequency domain for slug passage detection. The experimental characterization of the slug flows by the frequencies of the slugs passage was obtained and used to drive the pumps. The open loop control system was designed and implemented in Labview. The platform includes four modules and a GUI. The first manages the communication between the PC and the syringe pumps, while the second is used to implement the control law. The third manages signal acquisition from the photo-diodes and the last implements the soft-sensor for the signal analysis. Wide-reaching experimental design was carried out for characterization and validation of this approach.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献