An Unsupervised Classification Method for Flame Image of Pulverized Coal Combustion Based on Convolutional Auto-Encoder and Hidden Markov Model

Author:

Qiu Tian,Liu Minjian,Zhou Guiping,Wang Li,Gao Kai

Abstract

Combustion condition monitoring is a fundamental and critical issue that needs to be addressed in the wide-load operation of coal-fired boilers. In this paper, an unsupervised classification framework based on the convolutional auto-encoder (CAE), the principal component analysis (PCA), and the hidden Markov model (HMM) is proposed to monitor the combustion condition with the uniformly spaced flame images, which are collected from the furnace combustion monitoring system. First, CAE is adopted to extract the features from the flame images, which obtain the sparse representations in the images. Then, PCA is applied to project the feature vectors into the orthogonal space for robustness and computation efficiency. Finally, a HMM is built to calculate the corresponding optimal states by learning the temporal behaviors in the compressed representations. A coal combustion adjustment experiment was conducted in a 660 MW opposed-firing boiler, and the sequential 14,400 flame images with three different combustion states were obtained to evaluate the effectiveness of the proposed approach. We tested six different compression dimensions of the latent variable z in the CAE model and ensured that the appropriate compress parameter was 1024. The proposed framework is compared with five other methods: the CAE + Gaussian mixture model (GMM), CAE + Kmean, the CAE + fuzzy c-mean method, CAE + HMM, and the traditional handcraft feature extraction method (TH) + HMM. The results show that the proposed framework has the highest classification accuracy (95.25% for the training samples and 97.36% for the testing samples) and has the best performance in recognizing the semi-stable state (85.67% for the training samples and 77.60% for the testing samples), indicating that the proposed framework is capable of identifying the combustion condition, changing when the combustion deteriorates as the coal feed rate falls.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference38 articles.

1. Diagnosis of Furnace Flame by Computer Image Processing and Neural Network Technology;Wang;Therm. Power Gener.,2003

2. Combustion Diagnosis Based on Flame Image in Furnace;Chen;Power Eng.,2003

3. Recogniton and Diagnosis of Boiler Flame Based on Wavelet Neural Network;Xu;Chin. J. Sci. Instrum.,2004

4. Interactive Method of Furnace Flame Image Recognition Based on Neural Network;Han;Proc. CSEE,2008

5. Research on Furnace Flame Detection Based on MSIF;Li,2009

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3