High Quality Syngas Production with Supercritical Biomass Gasification Integrated with a Water–Gas Shift Reactor

Author:

Sarafraz M. M.ORCID,Safaei Mohammad RezaORCID,Jafarian M.,Goodarzi MarjanORCID,Arjomandi M.

Abstract

A thermodynamic assessment is conducted for a new configuration of a supercritical water gasification plant with a water–gas shift reactor. The proposed configuration offers the potential for the production of syngas at different H2:CO ratios for various applications such as the Fischer–Tropsch process or fuel cells, and it is a path for addressing the common challenges associated with conventional gasification plants such as nitrogen dilution and ash separation. The proposed concept consists of two reactors, R1 and R2, where the carbon containing fuel is gasified (in reactor R1) and in reactor R2, the quality of the syngas (H2:CO ratio) is substantially improved. Reactor R1 is a supercritical water gasifier and reactor R2 is a water–gas shift reactor. The proposed concept was modelled using the Gibbs minimization method with HSC chemistry software. Our results show that the supercritical water to fuel ratio (SCW/C) is a key parameter for determining the quality of syngas (molar ratio of H2:CO) and the carbon conversion reaches 100%, when the SWC/C ratio ranges between two and 2.5 at 500–1000 °C.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference57 articles.

1. A Realizable Renewable Energy Future

2. Solar Hydrogen: Moving Beyond Fossil Fuels;Ogden,1989

3. Biomass for Renewable Energy, Fuels, and Chemicals;Klass,1998

4. The Fischer–Tropsch process: 1950–2000

5. On the mechanisms and behavior of coal syngas transport and reaction within the anode of a solid oxide fuel cell

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3