Abstract
A matrix information-geometric method was developed to detect the change-points of rigid body motions. Note that the set of all rigid body motions is the special Euclidean group S E ( 3 ) , so the Riemannian mean based on the Lie group structures of S E ( 3 ) reflects the characteristics of change-points. Once a change-point occurs, the distance between the current point and the Riemannian mean of its neighbor points should be a local maximum. A gradient descent algorithm is proposed to calculate the Riemannian mean. Using the Baker–Campbell–Hausdorff formula, the first-order approximation of the Riemannian mean is taken as the initial value of the iterative procedure. The performance of our method was evaluated by numerical examples and manipulator experiments.
Funder
National Natural Science Foundation of China
National Science and Technology Major Project
Natural Science Foundation of Liaoning Province
Subject
General Physics and Astronomy