Thermal Decomposition and Combustion of Microwave Pre-Treated Biomass Pellets

Author:

Goldšteins Linards,Valdmanis Raimonds,Zaķe Maija,Arshanitsa Alexandr,Andersone Anna

Abstract

The objective of the study was to investigate a more effective use of commercially available biomass pellets (wheat straw, wood, peat) using microwave pretreatment to improve heat production. Pellets were pretreated using the originally designed microwave torrefaction device. The effects of microwave (mw) pretreatment were quantified, providing measurements of the weight loss and elemental composition of pellets and estimating the effect of mw pretreatment on their porosity, surface area and calorific values at pretreatment temperatures of T = 448–553 K. Obtained results show that the highest structural variations and elemental composition during mw pretreatment were obtained for wheat straw pellets, with an increase in reactivity, a decreasing in the duration of the thermal decomposition by about 40% and an increase in the yield of combustible volatiles. Increased reactivity of pretreated pellets enhanced the ignition and burnout of volatiles, decreasing the duration of the burnout of pretreated wheat straw, wood and peat pellets by 40%, 24% and 9%, respectively, and increasing the peak and average values of the flame temperature, heat output, and produced heat energy by 40–50%, with a correlating increase of combustion efficiency and the mass fraction of carbon-neutral CO2 emission. Thus, the applicability of microwave pretreatment for the control and improvement of heat production was confirmed.

Funder

European Regional Development Fund

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference24 articles.

1. Climate & Energy Frameworkhttps://ec.europa.eu/clima/policies/strategies/2030_en

2. A review on microwave pyrolysis of lignocellulosic biomass

3. Recent Progress on Microwave Processing of Biomass for Bioenergy Production

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3