The Effect of Pore Structure on Impact Behavior of Concrete Hollow Brick, Autoclaved Aerated Concrete and Foamed Concrete

Author:

Liu JianORCID,Ren YuzheORCID,Chen Rui,Wu Yuedong,Lei Weidong

Abstract

Porous concrete is an energy absorption material, which has been widely used in civil engineering, traffic engineering and disaster reduction engineering. However, the effect of pore structure on the impact behavior of the porous concrete is lacked. In this study, a series of drop-weight impact tests were carried out on three typical types of porous concrete, i.e., concrete hollow brick (CHB), autoclaved aerated concrete (AAC) and foamed concrete (FC), to investigate the effect of pore structures on their impact behavior. For comparison, static load tests were also conducted as references. According to the damage to the samples, the developments of impact force, strain, contact stress–strain relationship and absorbed energy during drop-weight during the impact test were measured and analyzed. The results show that the ratio between the peak impact stress and compressive strength of CHB was 0.44, while that of AAC and FC increased to about 0.6, indicating that the small and uniform pore structure in AAC and FC had a higher resistance against impact load than the hollow cavity of CHB. In addition, the elastic recovery strain in AAC increased by about 0.2% and its strain at peak contact stress increased by about 160% for a comparison of CHB, implying that a small open pore structure could enhance ductility. Besides, the peak contact stress of FC was close to that of AAC during impact loading, while the strain at peak contact stress of FC increased by about 36% compared with AAC, revealing that the closed-pore structure could further enhance the deformation potential. Correspondingly, the energy absorption rates of CHB, AAC and FC were 85.9 kJ/s, 54.4 kJ/s and 49.7 kJ/s, respectively, where AAC decreased by about 58% compared with CHB, and FC decreased by about 10% compared with AAC.

Funder

Ministry of Science and Technoligy of the People’s Republic of China

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3