Efficient Bio-Oxidation of Cellobiose with Engineered Gluconobacter oxydans to Provide Highly Concentrated Cellobionic Acid

Author:

Bieringer Emmeran1ORCID,Pütthoff Lisa2,Zimmermann Arne1,de Souza Góes Mariana1ORCID,Yilmaz Uraz1,Ehrenreich Armin2ORCID,Liebl Wolfgang2ORCID,Weuster-Botz Dirk1ORCID

Affiliation:

1. Chair of Biochemical Engineering, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany

2. Chair of Microbiology, Technical University of Munich, Emil-Ramann-Straße 4, 85354 Freising, Germany

Abstract

Cellobionic acid (CBA) can be obtained through the oxidation of cellobiose, the monomer of cellulose. CBA serves as a plant-based alternative to its stereoisomer lactobionic acid, which is used in the pharmaceutical, cosmetic, and food industries. Gluconobacter oxydans is a well-established whole-cell biocatalyst with membrane-bound dehydrogenases (mDH) for regio-specific oxidations. As G. oxydans wildtype cells show low cellobiose oxidation activities, the glucose mDH from Pseudomonas taetrolens was overexpressed in G. oxydans BP9, a multi mDH deletion strain. Whole-cell biotransformation studies were performed with resting cells of the engineered G. oxydans in stirred tank bioreactors. Initial biomass specific cellobionate formation rates increased with increasing cellobiose concentrations up to 190 g L−1, and were constant until the solubility limit. The maximal volumetric CBA formation rates and the oxygen uptake rates increased linearly with the concentration of engineered G. oxydans. This enables the estimation of the maximum biocatalyst concentration limited by the maximum oxygen transfer rate of any bioreactor. Thus, 5.2 g L−1 G. oxydans was sufficient to produce 502 g L−1 CBA with >99% yield in a simple aerobic batch process. The highly concentrated CBA will reduce downstream processing costs considerably after cell separation.

Funder

German Federal Ministry of Food and Agriculture

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3