Experimental Study on Factors Affecting Fracture Conductivity

Author:

Tian Fuchun1,Jia Yunpeng1,Yang Liyong1,Liu Xuewei1,Guo Xinhui2,Martyushev Dmitriy A.3ORCID

Affiliation:

1. Petroleum Engineering Research Institute, Petrochina Dagang Oilfield Company, Tianjin 300280, China

2. College of Environment, Liaoning University, Shenyang 110036, China

3. Department of Oil and Gas Technologies, Perm National Research Polytechnic University, Perm 614990, Russia

Abstract

The conductivity of propped fractures following hydraulic fracturing is crucial in determining the success of the fracturing process. Understanding the primary factors affecting fracture conductivity and uncovering their impact patterns are essential for guiding the selection of fracturing engineering parameters. We conducted experiments to test fracture conductivity and analyzed the effects of proppant particle size, closure pressure, and fracture surface properties on conductivity. Using the orthogonal experimental method, we clarified the primary and secondary relationships of the influencing factors on conductivity. The results indicate that proppant particle size, formation closure pressure, and fracture surface properties significantly affect fracture conductivity, with the order of influence being closure pressure > fracture surface properties > proppant particle size. Using large-particle-size proppants effectively increases interparticle porosity and enhances fracture conductivity. However, large-particle-size proppants reduce the number of contact points between particles, increasing the pressure on individual particles and making them more prone to crushing, which decreases fracture conductivity. Proppants become compacted under closure pressure, leading to a reduction in fracture conductivity. Proppant particles can embed into the fracture surface under closure pressure, further impacting fracture conductivity. Compared to non-laminated fracture surfaces, proppant particles are more likely to embed into laminated fracture surfaces under closure pressure, resulting in a greater embedding depth and reduced conductivity.

Funder

National Key Research and Development Program of China

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3