An Accurate Calculation Method on Blasingame Production Decline Model of Horizontal Well with Dumbbell-like Hydraulic Fracture in Tight Gas Reservoirs

Author:

Xiang Zuping123,Jia Ying1,Xu Youjie34,Ao Xiang3,Liu Zhezhi3,Zhu Shijie3ORCID,Chen Zhonghua3

Affiliation:

1. State Key Laboratory of Shale Oil and Gas Enrichment Mechanism and Effective Development, Beijing 102206, China

2. Key Laboratory of Marine Oil and Gas Reservoirs Production, Sinopec, Beijing 102206, China

3. School of Petroleum Engineering, Chongqing University of Science and Technology, Chongqing 401331, China

4. Chongqing Key Lab Complex Oil & Gas Fields Exploration, Chongqing University of Science and Technology, Shapingba, Chongqing 401331, China

Abstract

Blasingame production decline is an effective method to obtain permeability and single-well controlled reserves. The accurate Blasingame production decline curve needs an accurate wellbore pressure approximate solution of the real-time domain. Therefore, the aim of this study is to present a simple and accurate wellbore pressure approximate solution and Blasingame production decline curves calculation method of a multi-stage fractured horizontal well (MFHW) with complex fractures. A semi-analytical model of MFHWs in circle-closed reservoirs is presented. The wellbore pressure and dimensionless pseudo-steady productivity index JDpss (1/bDpss) are verified with a numerical solution. The comparison result reaches a good match. Wellbore pressure and Blasingame production decline curves are used to analyze parameter sensitivity. Results show that when the crossflow from matrix to natural fracture appears after the pseudo-state flow regime, the value of the inter-porosity coefficient has an obvious influence on the pressure approximate solution of the pseudo-steady flow regime in naturally fractured gas reservoirs. The effects of relevant parameters on wellbore pressure and the Blasingame decline curve are also analyzed. The method of pseudo-steady productivity index JDpss can applied to all well and reservoir models.

Funder

Open Fund Project of Sinopec State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3