Characterization and Comparison of Anammox Immobilization in Polyvinyl Alcohol, Polyethylene Glycol and Water-Borne Polyurethane

Author:

Yang Yi12,Gong Hui2ORCID,Zhou Zhen1,Dai Xiaohu2

Affiliation:

1. School of Environmental and Chemical Engineering, Shanghai Electric Power University, Shanghai 200090, China

2. College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China

Abstract

Anammox bacteria were embedded with different mass fractions of polyvinyl alcohol (PVA), polyethylene glycol (PEG) and water-based polyurethane (WPU) materials. The embedded immobilized pellets with different particle sizes of about 2.8–3.2 mm were prepared. The effects of the mass fraction of the embedding material (PVA 6–12%, PEG 6–9%, WPU 10%) and the concentration of activated carbon added in the embedding process (0–4%) on the pellet was investigated. The performance of pellet formation, sedimentation rate, mechanical strength, expansion coefficient, and elasticity were compared and analyzed under different immobilization conditions, and the parameters of each embedding step were optimized. Anammox immobilized pellets prepared with 10% polyvinyl alcohol (PVA), 2% sodium alginate (SA), and 2% powdered activated carbon were proposed. The effects of salinity on anammox were investigated through a batch test, and the optimal reaction conditions were selected to carry out the operation test. The functional groups of embedded and unembedded anammox sludge were detected using the infrared spectrum. A continuous flow sequencing batch reactor (SBR) demonstrated stable operation with immobilized anammox. Scanning electron microscopy revealed that the immobilized anammox pellets appeared as irregular particles, with each micro-unit predominantly being spherical. Additionally, a minor presence of rod-shaped bacteria was also noted. After 30 days of stable operation of the reactor, the ammonia nitrogen removal rate reached 84.7%.

Funder

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3