Development and Performance Analysis of a Low-Cost Redox Flow Battery

Author:

Huq Nayeem Md. Lutful12,Mohammed Mahbubul Islam1ORCID,Lotif Gazi3ORCID,Ashrafi Md. Rabbul2ORCID,Himan Miah1ORCID

Affiliation:

1. Institute of Energy Engineering, Dhaka University of Engineering & Technology, Gazipur (DUET), Gazipur 1707, Bangladesh

2. Department of Mechanical Engineering, Dhaka University of Engineering & Technology, Gazipur (DUET), Gazipur 1707, Bangladesh

3. Department of Chemical Engineering, Dhaka University of Engineering & Technology, Gazipur (DUET), Gazipur 1707, Bangladesh

Abstract

Redox Flow Batteries (RFBs) offer a promising solution for energy storage due to their scalability and long lifespan, making them particularly attractive for integrating renewable energy sources with fluctuating power output. This study investigates the performance of a prototype Zinc-Chlorine Flow Battery (ZCFB) designed for low-cost and readily available electrolytes. The ZCFB utilizes a saltwater electrolyte containing ZnCl2 and NaCl, paired with a mineral spirits catholyte. The electrolyte consists of a 4 M ZnCl2 and a 2 M NaCl solution, both with a pH of 4.55. The anode was a zinc metal electrode, while the cathode comprised a porous carbon electrode on a titanium grid current collector. The cell volume was approximately 4.0 mL, with separate reservoirs for the NaCl/H2O and mineral spirits electrolytes. Experiments were conducted under constant current conditions, with a 0.2 A charging current and a 5 mA discharge current chosen for optimal cell voltage. The study analyzed the relationship between voltage, current, power, and capacity during both charging and discharging cycles. Results from multiple charge/discharge cycles found that the current density of the battery is around 62.658 mA/cm2 with an energy capacity average of 1.2 Wh. These findings can contribute to the development of more efficient and practical ZCFBs, particularly for applications requiring low-cost and readily available electrolytes.

Funder

University Grants Commission of Bangladesh

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3