Kinetics of Vanillin and Vanillic Acid Production from Pine Kraft Lignin

Author:

Dos Santos Ricardo Javier12,Vallejos María Evangelina1ORCID,Area María Cristina1ORCID,Felissia Fernando Esteban1ORCID

Affiliation:

1. IMAM, UNaM, CONICET, FCEQyN, Programa de Celulosa y Papel (PROCYP), Félix de Azara 1552, Posadas 3300, Argentina

2. Facultad de Ciencias Forestales, Universidad Nacional de Misiones, Bertoni 124 km 3, Eldorado 3380, Argentina

Abstract

Vanillin (4-hydroxy-3-methoxybenzaldehyde) is the main component of natural vanilla and a relevant substance in the flavoring and aromatic industries. This study presents a kinetic model to explain both vanillin and vanillic acid concentrations achieved in the alkaline oxidation of pine kraft lignin. Considering that they come from the same precursors, this approach allows an understanding of vanillin production with reaction conditions that minimize the vanillic acid pathway directly from the lignin oligomers, thus maximizing vanillin production. This study involves the effects of oxygen partial pressure, temperature, and the presence or absence of a catalyst (CuSO4 and Fe2(SO4)3 mixture) on the vanillin and vanillic acid yields. An adapted reactor (M/K Systems Inc., Williamstown, MA, USA) with a recirculation and spray liquids system was used in the experiments. The experiments were performed using one liter of a solution of NaOH 2 M and 60 g of lignin. During the lignin oxidation reaction, liquid samples were analyzed at different times (from 0 to 200 min). The oxidation products were quantified by liquid chromatography (HPLC). The catalyzed experiments presented higher maximum vanillin yields than the non-catalyzed ones (39.2–39.6% on nitrobenzene oxidation) achieved at 150 °C. A kinetic model is proposed where the kinetic parameters were estimated using Monte Carlo methods, fitting satisfactorily to the experimental results. The statistical analysis of the kinetic parameters showed that all the studied variables significantly affect the vanillin yield.

Funder

The National Scientific and Technical Research Council

Publisher

MDPI AG

Reference34 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3