Modeling Study on Heat Capacity, Viscosity, and Density of Ionic Liquid–Organic Solvent–Organic Solvent Ternary Mixtures via Machine Learning

Author:

Shu You1,Du Lei1,Lei Yang1ORCID,Hu Shaobin2,Kuang Yongchao2,Fang Hongming1,Liu Xinyan1,Chen Yuqiu3ORCID

Affiliation:

1. Hubei Key Laboratory of Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China

2. Hubei Energy Group Jiangling Power Generation Co., Ltd., Jiangling 434100, China

3. Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, DE 19716, USA

Abstract

Physicochemical properties of ionic liquids (ILs) are essential in solvent screening and process design. However, due to their vast diversity, acquiring IL properties through experimentation alone is both time-consuming and costly. For this reason, the creation of prediction models that can accurately forecast the characteristics of IL and its mixtures is crucial to their application. This study proposes a model for predicting the three important parameters of the IL-organic solvent–organic solvent ternary system: density, viscosity, and heat capacity. The model incorporates group contribution (GC) and machine learning (ML) methods. A link between variables such as temperature, pressure, and molecular structure is established by the model. We gathered 2775 viscosity, 6515 density, and 1057 heat capacity data points to compare the prediction accuracy of three machine learning methods, namely, artificial neural networks (ANNs), extreme gradient boosting (XGBoost), and light gradient boosting machine (LightGBM). As can be observed from the findings, the ANN model produced the best results out of the three GC-based ML methods, even though all three produced dependable predictions. For heat capacity, the mean absolute error (MAE) of the ANN model is 1.7320 and the squared correlation coefficient (R2) is 0.9929. Regarding viscosity, the MAE of the ANN model is 0.0225 and the R2 is 0.9973. For density, the MAE of the ANN model is 7.3760 and the R2 is 0.9943. The Shapley additive explanatory (SHAP) approach was applied to the study to comprehend the significance of each feature in the prediction findings. The analysis results indicated that the R-CH3 group of the ILs, followed by the imidazolium (Im) group, had the highest impact on the heat capacity property of the ternary system. On the other hand, the Im group and the R-H group of ILs had the most effects on viscosity. In terms of density, the Im group of the ILs had the greatest effect on the ternary system, followed by the molar fraction of the organic solvent.

Funder

t Science and Technology Major Project of Wuha

National Natural Science Foundation of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3