Quantitative Characterization of Pore–Fracture Structures in Coal Reservoirs by Using Mercury Injection–Removal Curves and Permeability Variation under Their Constraints

Author:

Jiang Xuchao1,Miao Bin2ORCID,Zhang Junjian3ORCID,Xi Danyang4ORCID,Qin Zhenyuan5,Vandeginste Veerle6

Affiliation:

1. Beijing Tianma Intelligent Control Technology Co., Ltd., Beijing 101399, China

2. College of Resources, Shandong University of Science and Technology, Tai’an 271019, China

3. College of Earth Sciences & Engineering, Shandong University of Science and Technology, Qingdao 266590, China

4. School of Resources and Geosciences, China University of Mining and Technology, Xuzhou 221116, China

5. Department of Mechanical, Materials and Manufacturing Engineering, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK

6. Department of Materials Engineering, KU Leuven, Campus Bruges, 8200 Bruges, Belgium

Abstract

Pore and fracture structure heterogeneity is the basis for coalbed methane production capacity. In this paper, high-pressure mercury intrusion test curves of 16 coal samples from the Taiyuan Formation in the Linxing area are studied. Based on the fractal dimension values of mercury intrusion and retreat curves, the correlation between the two different fractal parameters is studied. Then, the permeability variation of different types of coal samples is studied using overlying pressure pore permeability tests. The correlation between the permeability variation of coal samples and dimension values is explored, and the results are as follows. (1) Based on porosity and mercury removal efficiency, all coal samples can be divided into three types, that is, types A, B, and C. Among them, Type A samples are characterized by lower total pore volume, with pore volume percentages ranging from 1000 to 10,000 nm not exceeding 15%. (2) During the mercury injection stage, both the M-model and S-model can reflect the heterogeneity of seepage pore distribution. In the mercury removal stage, the M-model cannot characterize the heterogeneity of pore size distribution in each stage, which is slightly different from the mercury injection stage. (3) The permeability of Type A samples is most sensitive to pressure, with a permeability loss rate of up to 96%. The original pore and fracture structure of this type of coal sample is relatively developed, resulting in a high initial permeability. (4) There is no significant relationship between compressibility and fractal dimension of mercury injection and mercury removal, which may be due to the comprehensive influence of pore structure on the compressibility of the sample.

Funder

Research Fund of Shandong Coalffeld Geological Bureau

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3