LiDAR Point Cloud Recognition of Overhead Catenary System with Deep Learning

Author:

Lin ShuaiORCID,Xu ChengORCID,Chen LipeiORCID,Li SiqiORCID,Tu XiaohanORCID

Abstract

High-speed railways have been one of the most popular means of transportation all over the world. As an important part of the high-speed railway power supply system, the overhead catenary system (OCS) directly influences the stable operation of the railway, so regular inspection and maintenance are essential. Now manual inspection is too inefficient and high-cost to fit the requirements for high-speed railway operation, and automatic inspection becomes a trend. The 3D information in the point cloud is useful for geometric parameter measurement in the catenary inspection. Thus it is significant to recognize the components of OCS from the point cloud data collected by the inspection equipment, which promotes the automation of parameter measurement. In this paper, we present a novel method based on deep learning to recognize point clouds of OCS components. The method identifies the context of each single frame point cloud by a convolutional neural network (CNN) and combines some single frame data based on classification results, then inputs them into a segmentation network to identify OCS components. To verify the method, we build a point cloud dataset of OCS components that contains eight categories. The experimental results demonstrate that the proposed method can detect OCS components with high accuracy. Our work can be applied to the real OCS components detection and has great practical significance for OCS automatic inspection.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Vision-based monitoring of railway superstructure: A review;Construction and Building Materials;2024-09

2. 3DGraphSeg: A Unified Graph Representation- Based Point Cloud Segmentation Framework for Full-Range High-Speed Railway Environments;IEEE Transactions on Industrial Informatics;2023-12

3. Self-Attentive Local Aggregation Learning With Prototype Guided Regularization for Point Cloud Semantic Segmentation of High-Speed Railways;IEEE Transactions on Intelligent Transportation Systems;2023-10

4. Safety-relevant release function for pantograph based electrified trucks and semi-trailers;2023 First International Conference on Cyber Physical Systems, Power Electronics and Electric Vehicles (ICPEEV);2023-09-28

5. Point cloud segmentation of overhead contact systems with deep learning in high-speed rails;Journal of Network and Computer Applications;2023-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3