Optimum Achievable Rates in Two Random Number Generation Problems with f-Divergences Using Smooth Rényi Entropy

Author:

Nomura Ryo1ORCID,Yagi Hideki2

Affiliation:

1. Center for Data Science, Waseda University, Tokyo 169-8050, Japan

2. Department of Computer and Network Engineering, The University of Electro-Communications, Tokyo 182-8585, Japan

Abstract

Two typical fixed-length random number generation problems in information theory are considered for general sources. One is the source resolvability problem and the other is the intrinsic randomness problem. In each of these problems, the optimum achievable rate with respect to the given approximation measure is one of our main concerns and has been characterized using two different information quantities: the information spectrum and the smooth Rényi entropy. Recently, optimum achievable rates with respect to f-divergences have been characterized using the information spectrum quantity. The f-divergence is a general non-negative measure between two probability distributions on the basis of a convex function f. The class of f-divergences includes several important measures such as the variational distance, the KL divergence, the Hellinger distance and so on. Hence, it is meaningful to consider the random number generation problems with respect to f-divergences. However, optimum achievable rates with respect to f-divergences using the smooth Rényi entropy have not been clarified yet in both problems. In this paper, we try to analyze the optimum achievable rates using the smooth Rényi entropy and to extend the class of f-divergence. To do so, we first derive general formulas of the first-order optimum achievable rates with respect to f-divergences in both problems under the same conditions as imposed by previous studies. Next, we relax the conditions on f-divergence and generalize the obtained general formulas. Then, we particularize our general formulas to several specified functions f. As a result, we reveal that it is easy to derive optimum achievable rates for several important measures from our general formulas. Furthermore, a kind of duality between the resolvability and the intrinsic randomness is revealed in terms of the smooth Rényi entropy. Second-order optimum achievable rates and optimistic achievable rates are also investigated.

Funder

JSPS KAKENHI

Kayamori Foundation of Informational Science Advancement

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3