Evolution of RNA Viruses: Reasons for the Existence of Separate Plus, Minus, and Double-Strand Replication Strategies

Author:

Park Hyunjin1ORCID,Higgs Paul G.1ORCID

Affiliation:

1. Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4L8, Canada

Abstract

Plus, minus, and double-strand RNA viruses are all found in nature. We use computational models to study the relative success of these strategies. We consider translation, replication, and virion assembly inside one cell, and transmission of virions between cells. For viruses which do not incorporate a polymerase in the capsid, transmission of only plus strands is the default strategy because virions containing minus strands are not infectious. Packaging only plus strands has a significant advantage if the number of RNA strands produced per cell is larger than the number of capsids. In this case, by not packaging minus strands, the virus produces more plus-strand virions. Therefore, plus-strand viruses are selected at low multiplicity of infection. However, at high multiplicity of infection, it is preferable to package both strands because the additional minus virions produced are helpful when there are multiple infections per cell. The fact that plus-strand viruses are widespread while viruses that package both strands are not seen in nature suggests that RNA strands are indeed produced in excess over capsids, and that the multiplicity of infection is not sufficiently high to favor the production of both kinds of virions. For double-strand viruses, we show that it is advantageous to produce only plus strands from the double strand within the cell, as is observed in real viruses. The reason for the success of minus-strand viruses is more puzzling initially. For viruses that incorporate a polymerase in the virion, minus virions are infectious. However, this is not sufficient to explain the success of minus-strand viruses, because in this case, viruses that package both strands outcompete those that package only minus or only plus. Real minus-strand viruses make use of replicable strands that are coated by a nucleoprotein, and separate translatable plus strands that are uncoated. Here we show that when there are distinct replicable and translatable strands, minus-strand viruses are selected.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

Reference41 articles.

1. (2024, May 10). Viral Zone Website. Available online: https://viralzone.expasy.org/.

2. Strauss, J.H., and Strauss, E.G. (2008). Plus-strand RNA viruses. Viruses and Human Disease, Elsevier.

3. Parallels among positive-strand RNA viruses, reverse-transcribing viruses and double-stranded RNA viruses;Ahlquist;Nat. Rev. Microbiol.,2006

4. Strauss, J.H., and Strauss, E.G. (2008). Viruses and Human Disease, Elsevier.

5. Origins and evolution of the global RNA virome;Wolf;mBio,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3