Methodology for the Differential Classification of Dengue and Chikungunya According to the PAHO 2022 Diagnostic Guide

Author:

Arrubla-Hoyos Wilson1ORCID,Gómez Jorge Gómez2ORCID,De-La-Hoz-Franco Emiro3ORCID

Affiliation:

1. Facultad de Ingeniería, Universidad Nacional Abierta ya Distancia, Sincelejo 700002, Colombia

2. Grupo SOCRATES, Departamento de Ingeniería de Sistemas y Telecomunicaciones, Facultad de Ingeniería, Universidad de Córdoba, Montería 230001, Colombia

3. Department of Computer Science and Electronics, Faculty of Engineering, Universidad de la Costa, Barranquilla 080002, Colombia

Abstract

Arboviruses such as dengue, Zika, and chikungunya present similar symptoms in the early stages, which complicates their differential and timely diagnosis. In 2022, the PAHO published a guide to address this challenge. This study proposes a methodological framework that transforms qualitative information into quantitative information, establishing differential weights in relation to symptoms according to the medical evidence and the GRADE scale based on recommendation 1 of the said guide. To achieve this, common variables from the dataset were identified using the PAHO guide, and quality rules were established. A linear interpolation function was then parameterised to assign weights to the symptoms according to the evidence. Machine learning was used to compare the different models, achieving 99% accuracy compared with 79% without the methodology. This proposal represents a significant advancement, allowing the direct application of the PAHO recommendations to the dataset and improving the differential classification of arboviruses.

Funder

Universidad de Córdoba - Colombia

Publisher

MDPI AG

Reference51 articles.

1. (2024, March 13). UNITED NATIONS Sustainable Development Goals. Available online: https://www.un.org/sustainabledevelopment/.

2. Lambrechts, L., Scott, T.W., and Gubler, D.J. (2010). Consequences of the Expanding Global Distribution of Aedes Albopictus for Dengue Virus Transmission. PLoS Neglected Trop. Dis., 4.

3. A Predictive Analytics Model Using Machine Learning Algorithms to Estimate the Risk of Shock Development among Dengue Patients;Chaw;Healthc. Anal.,2024

4. (2024, March 13). PAHO/WHO Epidemiological Update—Dengue, Chikungunya and Zika—10 June 2023—PAHO/WHO | Pan American Health Organization. Available online: https://www.paho.org/en/documents/epidemiological-update-dengue-chikungunya-and-zika-10-june-2023.

5. (2024, March 13). WHO Dengue- Global Situation. Available online: https://www.who.int/emergencies/disease-outbreak-news/item/2023-DON498.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3