Towards Further Understanding the Secondary Fracture during Spaghetti Bent Break

Author:

Long LongORCID,Zheng Yuxuan,Zhou FenghuaORCID,Ren Huilan

Abstract

When a brittle thin rod, such as a dry spaghetti stick, is bent beyond its flexural limit, it often breaks into more than two pieces, typically three or more. This phenomenon and puzzle has aroused widespread interest and discussion since its first proposal by Feynman. Previous work has partly explained the inevitability of the secondary fracture, but without any adjustable time parameter. In order to further understand this problem, especially the secondary fracture, in this paper we propose and study the dynamics of a half-infinite model to mimic the physics that a spaghetti stick is half-infinite under uniform bending. When the breaking process starts, a gradual release of initial moment of a linearly declining time at the free end, instead of a sudden release, is adopted, resulting in the introduction of a characteristic time parameter to the model and agrees better with the real situation. A specific analytical solution in terms of the excited bending moment using Euler–Bernoulli beam theory is derived, and that the gradual release of initial moment induces a burst of flexural waves, and these flexural waves locally increase the moment in the stick and progressively get to the maximum value, and then lead to the secondary fracture are concluded. The excited moment increases with time and distance, and has an asymptotic extremum value of 1.43 times initial moment. The gradual release in our model requires and gives certain distance and time when the excited bending moment reaches its extremum value, which provides a possibility to predict the detailed fracture parameters such as fragmentation length and time and thus to further understand the secondary fracture during spaghetti bent break.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3