Author:
Gruber Christian,Raninger Peter,Stanojevic Aleksandar,Godor Flora,Rath Markus,Kozeschnik Ernst,Stockinger Martin
Abstract
Dynamic and meta-dynamic recrystallization occur during forging of alloy 718 aircraft parts and thus change the microstructure during a multistep production route. Since the prediction of the resulting grain structure in a single grain fraction is not able to describe microstructures with bimodal or even multimodal distributions, a multi-class grain size model has been deployed to describe the recrystallization mechanisms during thermomechanical treatments and predict the resulting grain size distributions more accurately. As forging parameters, such as temperature, strain rate and maximum strain influence the flow curve and consequently the recrystallization behavior, a series of double cone compression experiments has been carried out and used to verify and adapt the material parameters for the multi-class grain size model. The recrystallized fractions of the numerical and experimental results are compared and differentiated in view of the recrystallization mechanism, i.e., dynamic and meta-dynamic recrystallization. The strong dependence of the recrystallization kinetics on the initial grain size is highlighted, as well as the influence of different strain rates, which shall represent typical forging equipment.
Funder
Österreichische Forschungsförderungsgesellschaft
Subject
General Materials Science
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献