Investigation of the Erosion Damage Mechanism and Erosion Prediction of Boronized Coatings at Elevated Temperatures

Author:

Cai Liu-Xi,Li Yun,Wang Shun-Sen,He Yao,Li Fang,Liu Ze-Kun

Abstract

In this study, the high temperature erosion mechanisms and damage characteristics of a boronized coating have been systematically studied by employing an improved high-temperature accelerated erosion test bench and impact contact theory analyses. Within the scope of the experimental parameters, the erosion rate of the boronized coating under the same erosion conditions was observed to be only one half to one-twelfth of the erosion rate of the substrate. Furthermore, the boronized coating was noted to be less sensitive to the speed of the erosion particles than the plastic substrate, thus, indicating superior and more stable erosion resistance than the base material. The boronized coating exhibited typical brittle fracture characteristics under impact by the high-speed particles. When the particle impact normal stress exceeded the critical stress for crack propagation owing to the coating defects, the surface and subsurface layers of the coating initially formed horizontal and vertical micro-cracks, followed by their gradual expansion and intersection. After destabilization, the brittle coating material was peeled layer-by-layer from the surface of the test piece. At the same incident speed, as the particle size was increased from 65 μm to 226 μm and 336 μm, the size (width) of the erosion cracks on the coating surface increased from 1 μm to 30 μm and 100 μm respectively. Correspondingly, the erosion damage thickness of the coating was enhanced from 15 μm to 50 μm and 100 μm. In the case of the quartz sand particle size exceeding 300 μm, the dual-phase boronized coating did not provide effective protection to the substrate. Furthermore, based on the elastoplastic fracture theory, a prediction model for the erosion weight loss of the boronized coatings within the effective thickness range has been proposed in this study.

Funder

National Natural Science Foundation of China

China postdoctoral science foundation

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3