A Novel Camera-Based Measurement System for Roughness Determination of Concrete Surfaces

Author:

Özcan BarışORCID,Schwermann Raimund,Blankenbach JörgORCID

Abstract

Determining the roughness of technical surfaces is an important task in many engineering disciplines. In civil engineering, for instance, the repair and reinforcement of building component parts (such as concrete structures) requires a certain surface roughness in order to ensure the bond between a coating material and base concrete. The sand patch method is so far the state-of-the-art for the roughness measurement of concrete structures. Although the method is easy to perform, it suffers from considerable drawbacks. Consequently, more sophisticated measurement systems are required. In a research project, we developed a novel camera-based alternative, which comes with several advantages. The measurement system consists of a mechanical cross slide that guides an industrial camera over a surface to be measured. Images taken by the camera are used for 3D reconstruction. Finally, the reconstructed point clouds are used to estimate roughness. In this article, we present our measurement system (including the hardware and the self-developed software for 3D reconstruction). We further provide experiments to camera calibration and evaluation of our system on concrete specimens. The resulting roughness estimates for the concrete specimens show a strong linear correlation to reference values obtained by the sand patch method.

Funder

Bundesministerium für Wirtschaft und Energie

Publisher

MDPI AG

Subject

General Materials Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mean Texture Depth Estimation of Exposed Aggregate Concrete Pavement Surface Texture Based on Photogrammetry Technique;International Journal of Civil Engineering;2024-05-13

2. Cloud-Enhanced Machine Learning Models for Predictive Maintenance in Industrial IoT;2024 International Conference on Trends in Quantum Computing and Emerging Business Technologies;2024-03-22

3. Developing Real-World Applications with Algorithmic Intelligence in Reinforcement Learning for Robotics;2024 International Conference on Trends in Quantum Computing and Emerging Business Technologies;2024-03-22

4. Taylor-Gorilla troops optimized deep learning network for surface roughness estimation;Network: Computation in Neural Systems;2023-08-22

5. Surface Roughness Prediction in Turning of Super Alloy through the Scaled Conjugate Gradient Model;2023 Second International Conference On Smart Technologies For Smart Nation (SmartTechCon);2023-08-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3