Material Parameter Identification for Acoustic Simulation of Additively Manufactured Structures

Author:

Rothe SebastianORCID,Blech ChristopherORCID,Watschke HagenORCID,Vietor ThomasORCID,Langer Sabine C.ORCID

Abstract

One possibility in order to manufacture products with very few restrictions in design freedom is additive manufacturing. For advanced acoustic design measures like Acoustic Black Holes (ABH), the layer-wise material deposition allows the continuous alignment of the mechanical impedance by different filling patterns and degrees of filling. In order to explore the full design potential, mechanical models are indispensable. In dependency on process parameters, the resulting homogenized material parameters vary. In previous investigations, especially for ABH structures, a dependency of the material parameters on the structure’s thickness can be observed. In this contribution, beams of different thicknesses are investigated experimentally and numerically in order to identify the material parameters in dependency on the frequency and the thickness. The focused material is polyactic acid (PLA). A parameter fitting is conducted by use of a 3D finite element model and it’s reduced version in a Krylov subspace. The results yield homogenized material parameters for the PLA stack as a function of frequency and thickness. An increasing Young’s modulus with increasing frequency and increasing thickness is observed. This observed effect has considerable influence and has not been considered so far. With the received parameters, more reliable results can be obtained.

Publisher

MDPI AG

Subject

General Materials Science

Reference37 articles.

1. Acoustic absorbers by additive manufacturing

2. Design, Experimental and Numerical Characterization of 3D-Printed Porous Absorbers

3. Acoustic black hole manufacturing for practical applications and the effect of geometrical and material imperfection;Bowyer,2016

4. Propagation of a flexural wave in a plate whose thickness decreases smoothly to zero in a finite interval;Mironov;Sov. Phys. Acoust. USSR,1988

5. Propagation of localised flexural vibrations along plate edges described by a power law;Krylov;Proc. Inst. Acoust.,2000

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3