Abstract
The influence of microstructure evolution on the dynamic mechanical properties, including storage modulus and internal friction, of the 2.5D SiCf/SiCm composites after high-temperature treatment (800 °C and 1400 °C) in the air was investigated by three-point bending vibration test. The effects of test frequency and amplitude on storage modulus and internal friction were also evaluated. The results show that as-prepared samples have maximum storage modulus and internal friction. However, the composites treated at 800 °C in the air have the minimum storage modulus due to a large number of defects produced within the composite structure, and the composites treated at 1400 °C have the minimum internal friction due to the formation of α-cristobalite in the interface between the matrix and fibers, resulting in stronger interface bonding. With regard to test conditions, the storage modulus is sensitive to amplitude but not frequency; however, the internal friction is sensitive to both frequency because of anelasticity and amplitude due to the static hysteresis.
Funder
National Natural Science Foundation of China
Beijing Municipal Science and Technology Commission
Subject
General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献