Hollow-Core Photonic Crystal Fiber Mach–Zehnder Interferometer for Gas Sensing

Author:

Nazeri Kaveh,Ahmed FaridORCID,Ahsani VahidORCID,Joe Hang-Eun,Bradley Colin,Toyserkani Ehsan,Jun MartinORCID

Abstract

A novel and compact interferometric refractive index (RI) point sensor is developed using hollow-core photonic crystal fiber (HC-PCF) and experimentally demonstrated for high sensitivity detection and measurement of pure gases. To construct the device, the sensing element fiber (HC-PCF) was placed between two single-mode fibers with airgaps at each side. Great measurement repeatability was shown in the cyclic test for the detection of various gases. The RI sensitivity of 4629 nm/RIU was demonstrated in the RI range of 1.0000347–1.000436 for the sensor with an HC-PCF length of 3.3 mm. The sensitivity of the proposed Mach–Zehnder interferometer (MZI) sensor increases when the length of the sensing element decreases. It is shown that response and recovery times of the proposed sensor inversely change with the length of HC-PCF. Besides, spatial frequency analysis for a wide range of air-gaps revealed information on the number and power distribution of modes. It is shown that the power is mainly carried by two dominant modes in the proposed structure. The proposed sensors have the potential to improve current technology’s ability to detect and quantify pure gases.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3