Experimental Investigation of Ground Radiation on Dielectric and Brightness Temperature of Soil Moisture and Soil Salinity

Author:

Wang Weizhen,Dong Leilei,Ma ChunfengORCID,Wei Long,Xu Feinan,Feng Jiaojiao

Abstract

Soil moisture and salinity are crucial parameters of the Earth’s ecosystem; how to understand the radiation properties of them is of great significance for remote sensing monitoring. In this study, the application of mixed soil dielectric models (Dobson and generalized refractive mixing dielectric model (GRMDM)) and saline soil dielectric models (Dobson-S, HQR (Qingrong Hu), and WYR (Yueru Wu)) were analyzed to select the optimal models to simulate brightness temperature based on observational data. The brightness temperature of the soil moisture and multilevel salinity was simulated by using the Q-H (parameter of polarization mixing and parameter of characterizing height) model and Holmes parameterization scheme of soil effective temperature. The results show that both the Dobson model and the GRMDM model can well reproduce the real part and imaginary part of the dielectric constant of non-saline soil, and the GRMDM model was better. With the increase of the frequency, the simulation error of the dielectric constant of the saline soil by using the Dobson-S model, HQR model, and WYR model also increased, and the simulation result of the WYR model was better in the L band. The simulated result of the brightness temperature of soil moisture between the observation value and simulation value presented a high correlation both in the horizontal polarization and vertical polarization, with R greater than 0.967 and 0.948, and the root mean square error smaller than 3.998 K and 2.766 K, respectively. Meanwhile, the correlation coefficients of the brightness temperature of the saline soil in the horizontal polarization and vertical polarization were 0.935 and 0.971, and the root mean square errors were 5.808 K and 4.65 K, respectively. The brightness temperature decreased as the soil salinity increased, and the higher the salinity content was, the quicker the brightness temperature decreased. We expect that the experimental results can be used as a reference for algorithm developers to further enhance the accuracy of soil moisture and soil salinity retrievals.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3