Neural Information Squeezer for Causal Emergence

Author:

Zhang JiangORCID,Liu KaiweiORCID

Abstract

Conventional studies of causal emergence have revealed that stronger causality can be obtained on the macro-level than the micro-level of the same Markovian dynamical systems if an appropriate coarse-graining strategy has been conducted on the micro-states. However, identifying this emergent causality from data is still a difficult problem that has not been solved because the appropriate coarse-graining strategy can not be found easily. This paper proposes a general machine learning framework called Neural Information Squeezer to automatically extract the effective coarse-graining strategy and the macro-level dynamics, as well as identify causal emergence directly from time series data. By using invertible neural network, we can decompose any coarse-graining strategy into two separate procedures: information conversion and information discarding. In this way, we can not only exactly control the width of the information channel, but also can derive some important properties analytically. We also show how our framework can extract the coarse-graining functions and the dynamics on different levels, as well as identify causal emergence from the data on several exampled systems.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference47 articles.

1. Holland, J.H. (1999). Emergence: From Chaos to Order, Basic Books. Illustrated edition.

2. Weak Emergence;Bedau;Philos. Perspect.,1997

3. Pearl, J. (2009). Causality: Models of Reasoning and Inference, Cambridge University Press. [2nd ed.].

4. Investigating Causal Relations by Econometric Models and Cross-spectral Methods;Granger;Econometrica,1969

5. Quantifying causal emergence shows that macro can beat micro;Hoel;Proc. Natl. Acad. Sci. USA,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3