Modeling the Human Visuo-Motor System to Support Remote-Control Operation

Author:

Andersh Jonathan,Mettler Bérénice

Abstract

The working hypothesis in this project is that gaze interactions play a central role in structuring the joint control and guidance strategy of the human operator performing spatial tasks. Perceptual guidance and control is the idea that the visual and motor systems form a unified perceptuo-motor system where necessary information is naturally extracted by the visual system. As a consequence, the response of this system is constrained by the visual and motor mechanisms and these effects should manifest in the behavioral data. Modeling the perceptual processes of the human operator provides the foundation necessary for a systems-based approach to the design of control and display systems used by remotely operated vehicles. This paper investigates this hypothesis using flight tasks conducted with remotely controlled miniature rotorcraft, taking place in indoor settings that provide rich environments to investigate the key processes supporting spatial interactions. This work also applies to spatial control tasks in a range of application domains that include tele-operation, gaming, and virtual reality. The human-in-the-loop system combines the dynamics of the vehicle, environment, and human perception–action with the response of the overall system emerging from the interplay of perception and action. The main questions to be answered in this work are as follows: (i) what is the general control and guidance strategy of the human operator, and (ii) how is information about the vehicle and environment extracted visually by the operator. The general approach uses gaze as the primary sensory mechanism by decoding the gaze patterns of the pilot to provide information for estimation, control, and guidance. This work differs from existing research by taking what have largely been conceptual ideas on action–perception and structuring them to be implemented for a real-world problem. The paper proposes a system model that captures the human pilot’s perception–action loop; the loop that delineates the main components of the pilot’s perceptuo-motor system, including estimation of the vehicle state and task elements based on operator gaze patterns, trajectory planning, and tracking control. The identified human visuo-motor model is then exploited to demonstrate how the perceptual and control functions system can be augmented to reduce the operator workload.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3