Targeting the Autonomic Nervous System for Risk Stratification, Outcome Prediction and Neuromodulation in Ischemic Stroke

Author:

Carandina AngelicaORCID,Lazzeri Giulia,Villa DavideORCID,Di Fonzo AlessioORCID,Bonato Sara,Montano NicolaORCID,Tobaldini Eleonora

Abstract

Ischemic stroke is a worldwide major cause of mortality and disability and has high costs in terms of health-related quality of life and expectancy as well as of social healthcare resources. In recent years, starting from the bidirectional relationship between autonomic nervous system (ANS) dysfunction and acute ischemic stroke (AIS), researchers have identified prognostic factors for risk stratification, prognosis of mid-term outcomes and response to recanalization therapy. In particular, the evaluation of the ANS function through the analysis of heart rate variability (HRV) appears to be a promising non-invasive and reliable tool for the management of patients with AIS. Furthermore, preclinical molecular studies on the pathophysiological mechanisms underlying the onset and progression of stroke damage have shown an extensive overlap with the activity of the vagus nerve. Evidence from the application of vagus nerve stimulation (VNS) on animal models of AIS and on patients with chronic ischemic stroke has highlighted the surprising therapeutic possibilities of neuromodulation. Preclinical molecular studies highlighted that the neuroprotective action of VNS results from anti-inflammatory, antioxidant and antiapoptotic mechanisms mediated by α7 nicotinic acetylcholine receptor. Given the proven safety of non-invasive VNS in the subacute phase, the ease of its use and its possible beneficial effect in hemorrhagic stroke as well, human studies with transcutaneous VNS should be less challenging than protocols that involve invasive VNS and could be the proof of concept that neuromodulation represents the very first therapeutic approach in the ultra-early management of stroke.

Funder

Ministero della Salute

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3