Molecular Determinants of the Kinetic Binding Properties of Antihistamines at the Histamine H1 Receptors

Author:

Akimoto Hayato,Uesawa YoshihiroORCID,Hishinuma ShigeruORCID

Abstract

The binding affinity of ligands for their receptors is determined by their kinetic and thermodynamic binding properties. Kinetic analyses of the rate constants of association and dissociation (kon and koff, respectively) of antihistamines have suggested that second-generation antihistamines have a long duration of action owing to the long residence time (1/koff) at the H1 receptors. In this study, we examined the relationship between the kinetic and thermodynamic binding properties of antihistamines, followed by an evaluation of the structural determinants responsible for their kinetic binding properties using quantitative structure–activity relationship (QSAR) analyses. We found that whereas the binding enthalpy and entropy might contribute to the increase and decrease, respectively, in the koff values, there was no significant relationship with the kon values. QSAR analyses indicated that kon and koff values could be determined by the descriptors FASA_H (water-accessible surface area of all hydrophobic atoms divided by total water-accessible surface area) and vsurf_CW2 (a 3D molecular field descriptor weighted by capacity factor 2, the ratio of the hydrophilic surface to the total molecular surface), respectively. These findings provide further insight into the mechanisms by which the kinetic binding properties of antihistamines are regulated by their thermodynamic binding forces and physicochemical properties.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ex vivo analysis of ketotifen content in an antihistamine-eluting contact lens worn up to 5 hours;Therapeutic Delivery;2023-07

2. A Shocking Case of Shock;Annals of the American Thoracic Society;2023-02

3. Molecular Biology of Histamine System, Volume 1;International Journal of Molecular Sciences;2022-04-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3