Abstract
Monocyte to macrophage differentiation is characterized by the activation of various signal transduction pathways, which may be modulated by protein phosphorylation; however, the impact of protein kinases and phosphatases is not well understood yet. It has been demonstrated that actomyosin rearrangement during macrophage differentiation is dependent on Rho-associated protein kinase (ROCK). Myosin phosphatase (MP) target subunit-1 (MYPT1) is one of the major cellular substrates of ROCK, and MP is often a counter enzyme of ROCK; therefore, MP may also control macrophage differentiation. Changes in MP activity and the effects of MP activation were studied on PMA or l,25(OH)2D3-induced differentiation of monocytic THP-1 cells. During macrophage differentiation, phosphorylation of MYPT1 at Thr696 and Thr853 increased significantly, resulting in inhibition of MP. The ROCK inhibitor H1152 and the MP activator epigallocatechin-3-gallate (EGCG) attenuated MYPT1 phosphorylation and concomitantly decreased the extent of phosphorylation of 20 kDa myosin light chain. H1152 and EGCG pretreatment also suppressed the expression of CD11b and weakened the PMA-induced adherence of the cells. Our results indicate that MP activation/inhibition contributes to the efficacy of monocyte to macrophage differentiation, and this enzyme may be a target for pharmacological interventions in the control of disease states that are affected by excessive macrophage differentiation.
Funder
National Research, Development and Innovation Office
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献