Understanding the Pathophysiology of Thrombotic APS through Animal Models

Author:

Gandhi Alex A.,Estes Shanea K.,Rysenga Christine E.ORCID,Knight Jason S.ORCID

Abstract

Antiphospholipid syndrome (APS) is a leading acquired cause of thrombotic events, with a notable tendency to promote thrombosis in vascular beds of all sizes, including both arterial and venous circuits. While pathogenic antiphospholipid antibodies circulate at relatively stable levels in blood, thrombosis tends to manifest as discrete and acute events, suggesting the requirement for a “second hit.” While this two-hit model is generally accepted, much remains to be learned about exactly how antiphospholipid antibodies predispose to thrombosis in vivo and exactly how this predisposition interacts with the second hit. To this end, investigators have turned to animal models. Numerous approaches for modeling APS in animals have been described to date, each with potential advantages and disadvantages. This review will attempt to describe the most common APS models employed so far while discussing some pros and cons of each. Mechanisms of thrombotic APS that have thus far been explored in animal models will also be briefly addressed.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3