Characterization of Long Non-Coding RNA Profiles in Porcine Granulosa Cells of Healthy and Atretic Antral Follicles: Implications for a Potential Role in Apoptosis

Author:

Meng Li,Zhao KunORCID,Wang Chi ChiuORCID,Tao Jian,Wu Zhenfang,Teerds KatjaORCID,Zhang Shouquan

Abstract

Long non-coding RNAs (lncRNAs) play important roles in multiple biological processes including ovarian follicular development. Here we aimed to gain novel information regarding lncRNAs transcriptome profiles in porcine granulosa cells of advanced atretic antral (AA) and healthy antral (HA) follicles using RNA-seq. A total of 11,321 lncRNAs including 10,813 novel and 508 annotated lncRNAs were identified, of which 173 lncRNAs were differentially expressed (DE-lncRNAs); ten of these were confirmed by qRT-PCR. Gene Ontology indicated that DE-lncRNAs associated with developmental processes were highly enriched. Pathway analysis demonstrated predicted cis- and trans-targets of DE-lncRNAs. Potential mRNA targets of up-regulated DE-lncRNAs were mainly enriched in apoptosis related pathways, while targeted genes of downregulated DE-lncRNAs were primarily enriched in metabolism and ovarian steroidogenesis pathways. Linear regression analyses showed that expression of upregulated DE-lncRNAs was significantly associated with apoptosis related genes. NOVEL_00001850 is the most-downregulated DE-lncRNA (FDR = 0.04, FC = −6.53), of which miRNA binding sites were predicted. KEGG analysis of its downregulated target genes revealed that ovarian steroidogenesis was the second most highlighted pathway. qRT-PCR and linear regression analysis confirmed the expression and correlation of its potential targeted gene, CYP19A1, a key gene involved in estradiol synthesis. Our results indicate that lncRNAs may participate in granulosa cells apoptosis and thus antral follicular atresia.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3