Pathophysiology of Preeclampsia: The Role of Exosomes

Author:

Matsubara Keiichi,Matsubara Yuko,Uchikura Yuka,Sugiyama Takashi

Abstract

The pathogenesis of preeclampsia begins when a fertilized egg infiltrates the decidua, resulting in implantation failure (e.g., due to extravillous trophoblast infiltration disturbance and abnormal spiral artery remodeling). Thereafter, large amounts of serum factors (e.g., soluble fms-like tyrosine kinase 1 and soluble endoglin) are released into the blood from the hypoplastic placenta, and preeclampsia characterized by multiorgan disorder caused by vascular disorders develops. Successful implantation and placentation require immune tolerance to the fertilized egg as a semi-allograft and the stimulation of extravillous trophoblast infiltration. Recently, exosomes with diameters of 50–100 nm have been recognized to be involved in cell–cell communication. Exosomes affect cell functions in autocrine and paracrine manners via their encapsulating microRNA/DNA and membrane-bound proteins. The microRNA profiles of blood exosomes have been demonstrated to be useful for the evaluation of preeclampsia pathophysiology and prediction of the disease. In addition, exosomes derived from mesenchymal stem cells have been found to have cancer-suppressing effects. These exosomes may repair the pathophysiology of preeclampsia through the suppression of extravillous trophoblast apoptosis and promotion of these cells’ invasive ability. Exosomes secreted by various cells have received much recent attention and may be involved in the maintenance of pregnancy and pathogenesis of preeclampsia.

Funder

a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3