Establishment of Novel Protein Interaction Assays between Sin3 and REST Using Surface Plasmon Resonance and Time-Resolved Fluorescence Energy Transfer

Author:

Harada Masamitsu,Nagai Jun,Kurata Riho,Cui Xiaofeng,Isagawa Takayuki,Semba Hiroaki,Yoshida YasuhiroORCID,Takeda Norihiko,Maemura KojiORCID,Yonezawa Tomo

Abstract

Repressor element-1 (RE-1) or neural restrictive silencer element (NRSE) bound with a zinc finger transcription repressor, RE-1 silencing transcription factor (REST, also known as neural restrictive silencer factor, NRSF) has been identified as a fundamental repressor element in many genes, including neuronal genes. Genes regulated by REST/NRSF regulate multifaceted neuronal phenotypes, and their defects in the machinery cause neuropathies, disorders of neuron activity), autism and so on. In REST repressions, the N-terminal repressor domain recruits Sin3B via its paired amphipathic helix 1 (PAH1) domain, which plays an important role as a scaffold for histone deacetylase 1 and 2. This machinery has a critical role in maintaining neuronal robustness. In this study, in order to establish protein–protein interaction assays mimicking a binding surface between Sin3B and REST, we selected important amino acids from structural information of the PAH1/REST complex and then tried to reconstitute it using recombinant short peptides derived from PAH1/REST. Initially, we validated whether biotinylated REST interacts with glutathione S-transferase (GST)-tagged PAH1 and whether another PAH1 peptide (PAH1-FLAG) competitively binds with biotinylated REST using surface plasmon resonance (SPR). We observed a direct interaction and competitive binding of two PAH1 peptides. Secondly, in order to establish a high-throughput and high-dynamic-range assay, we utilized an easily performed novel time-resolved fluorescence energy transfer (TR-FRET) assay, and closely monitored this interaction. Finally, we succeeded in establishing a novel high-quality TR-FRET assay and a novel interaction assay based on SPR.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3