Abstract
During tissue injury events, the innate immune system responds immediately to alarms sent from the injured cells, and the adaptive immune system subsequently joins in the inflammatory reaction. The control mechanism of each immune reaction relies on the orchestration of different types of T cells and the activators, antigen-presenting cells, co-stimulatory molecules, and cytokines. Mitochondria are an intracellular signaling organelle and energy plant, which supply the energy requirement of the immune system and maintain the system activation with the production of reactive oxygen species (ROS). Extracellular mitochondria can elicit regenerative effects or serve as an activator of the immune cells to eliminate the damaged cells. Recent clarification of the cytosolic escape of mitochondrial DNA triggering innate immunity underscores the pivotal role of mitochondria in inflammation-related diseases. Human mesenchymal stem cells could transfer mitochondria through nanotubular structures to defective mitochondrial DNA cells. In recent years, mitochondrial therapy has shown promise in treating heart ischemic events, Parkinson’s disease, and fulminating hepatitis. Taken together, these results emphasize the emerging role of mitochondria in immune-cell-mediated tissue regeneration and ageing.
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献