An Intelligent Fire Warning Application Using IoT and an Adaptive Neuro-Fuzzy Inference System

Author:

Sarwar ,Bajwa ,Jamil ,Ramzan ,Sarwar

Abstract

In the recent past, a few fire warning and alarm systems have been presented based on a combination of a smoke sensor and an alarm device to design a life-safety system. However, such fire alarm systems are sometimes error-prone and can react to non-actual indicators of fire presence classified as false warnings. There is a need for high-quality and intelligent fire alarm systems that use multiple sensor values (such as a signal from a flame detector, humidity, heat, and smoke sensors, etc.) to detect true incidents of fire. An Adaptive neuro-fuzzy Inference System (ANFIS) is used in this paper to calculate the maximum likelihood of the true presence of fire and generate fire alert. The novel idea proposed in this paper is to use ANFIS for the identification of a true fire incident by using change rate of smoke, the change rate of temperature, and humidity in the presence of fire. The model consists of sensors to collect vital data from sensor nodes where Fuzzy logic converts the raw data in a linguistic variable which is trained in ANFIS to get the probability of fire occurrence. The proposed idea also generates alerts with a message sent directly to the user’s smartphone. Our system uses small size, cost-effective sensors and ensures that this solution is reproducible. MATLAB-based simulation is used for the experiments and the results show a satisfactory output.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference24 articles.

1. IoT-Based Intelligent Modeling of Smart Home Environment for Fire Prevention and Safety

2. Wireless Sensor Network Application or Fire Hazard Detection and Monitoring. Lecture Notesof the Institute for Computer Sciences;Manolakos;Soc. Inform. Telecommun. Eng.,2012

3. A general backpropagation algorithm for feedforward neural networks learning;Yu;IEEE Trans. Neural Netw.,2002

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3