Optimized Maxent Model Predictions of Climate Change Impacts on the Suitable Distribution of Cunninghamia lanceolata in China

Author:

Li YingchangORCID,Li Mingyang,Li Chao,Liu Zhenzhen

Abstract

Climate change significantly influences changes in ecological phenomena and processes, such as species distribution and phenology, thus accelerating the rate of species extinction or prosperity. Climate change is considered to be one of the most important threats to global biodiversity in the 21st century and will pose significant challenges to biodiversity conservation in the future. The use of niche modelling to predict changes in the suitable distribution of species under climate change scenarios is becoming a hot topic of biological conservation. In this study, we use data from China’s National Forest Continuous Inventory as well as specimen collection data of Cunninghamia lanceolata (Lamb.) Hook to run optimized Maxent models to predict potential suitable distribution of the species in the present day, 2050s, and 2070s under different climate change scenarios in China. In the modeling process, the most important uncorrelated variables were chosen, and the sample-size-adjusted Akaike information criterion (AICc) was used to select the optimal combination of feature type and regularization multiplier. Variable selection reduced the number of variables used and the complexity of the model, and the use of the AICc reduced overfitting. Variables relating to precipitation were more important than temperature variables in predicting C. lanceolata distribution in the optimal model. The predicted suitable distribution areas of C. lanceolata were different for the different periods under different climate change scenarios, with the centroids showing a degree of northward movement. The suitable distribution area is predicted to become more fragmented in the future. Our results reveal the climate conditions required for the suitable distribution of C. lanceolata in China and the likely changes to its distribution pattern in the future, providing a scientific basis for the sustainable management, protection, and restoration of the suitable habitat of this economically important tree species in the context of climate change.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3