The Impact of Partial Deforestation on Solute Fluxes and Stream Water Ionic Composition in a Headwater Catchment

Author:

Płaczkowska Eliza,Mostowik Karolina,Bogena Heye ReemtORCID,Leuchner MichaelORCID

Abstract

To ensure the good chemical status of surface water across Europe, it is necessary to increase research on the comprehensive impact of land use and land cover changes, i.e., deforestation, on the natural environment. For this reason, we used data from 9-year environmental monitoring in the Wüstebach experimental catchment of the TERENO (Terrestrial Environmental Observatories) network to determine the impact of partial deforestation on solute fluxes and stream water ionic composition. In 2013, a partial deforestation experiment was conducted in the study area using a cut-to-length logging method. To this end, two headwater catchments were compared: one partially deforested (22% of the catchment area) and one untreated control catchment. The concentrations of ions in stream water, groundwater, and precipitation were analyzed: Ca2+, Mg2+, Na+, K+, Al3+, Fetot, Mn2+, NO3−, SO4−, and Cl−. Most of the ions (Na+, Ca2+, Mg2+, Cl−, and SO4−) showed decreasing trends in concentrations after deforestation, indicating a dilution effect in stream water due to the reduction of the supply of solutes with precipitation in the open deforested area. The fluxes of these ions decreased by 5–7% in the first year after deforestation, although the stream runoff increased by 5%. In the second year, the decrease in ion fluxes was greater, from 6% to 24%. This finding confirms that only limited soil erosion occurred after the deforestation because the soil was well protected during logging works by covering harvester lanes with branches. Only K+ and NO3− ions showed increasing trends in both concentrations and fluxes in the partially deforested catchment in the first two to three years after deforestation. Spruce die-offs, common in Europe, may decrease the concentration and fluxes of base cations in surface water in a nutrient-limited environment. However, the simultaneous planting of young broad-leaved trees with post-harvesting regrowth could create a nutrient sink that protects the catchment area from nutrient depletion.

Funder

Polish National Agency for Academic Exchange

National Science Center

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference65 articles.

1. Klimo, E., Hager, H., and Kulhavý, J. (2000). Spruce Monocultures in Central Europe—Problems and Prospects, European Forest Institute. EFI Proceedings No. 33.

2. Klimo, E., Hager, H., and Kulhavý, J. (2000). Spruce Monocultures in Central Europe—Problems and Prospects, European Forest Institute. EFI Proceedings No. 33.

3. European Environment Agency (2018). European Waters—Assessment of Status and Pressures 2018, EEA Report 7.

4. Der Chemismus kleiner Bache in teilweise bewaldeten Einzugsgebieten in der Flyschzone eines Voralpentales;Keller;Mitteilgn. Schweizerischen Anstalt forstliche Versuchswesen,1970

5. Swank, W.T., and Crossley, D.A. (1998). Forest Hydrology and Ecology at Coweeta, Springer.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3