Avian Metapneumovirus Subgroup C Induces Mitochondrial Antiviral Signaling Protein Degradation through the Ubiquitin-Proteasome Pathway

Author:

Hou Lei,Hu Xiaohan,Guo Jinshuo,Quan Rong,Wei Li,Wang Jing,Song Jiangwei,Liu Jue

Abstract

The mitochondrial antiviral signaling (MAVS) protein, a critical adapter, links the upstream recognition of viral RNA to downstream antiviral signal transduction. However, the interaction mechanism between avian metapneumovirus subgroup C (aMPV/C) infection and MAVS remains unclear. Here, we confirmed that aMPV/C infection induced a reduction in MAVS expression in Vero cells in a dose-dependent manner, and active aMPV/C replication was required for MAVS decrease. We also found that the reduction in MAVS occurred at the post-translational level rather than at the transcriptional level. Different inhibitors were used to examine the effect of proteasome or autophagy on the regulation of MAVS. Treatment with a proteasome inhibitor MG132 effectively blocked MAVS degradation. Moreover, we demonstrated that MAVS mainly underwent K48-linked ubiquitination in the presence of MG132 in aMPV/C-infected cells, with amino acids 363, 462, and 501 of MAVS being pivotal sites in the formation of polyubiquitin chains. Finally, E3 ubiquitin ligases for MAVS degradation were screened and identified and RNF5 targeting MAVS at Lysine 363 and 462 was shown to involve in MAVS degradation in aMPV/C-infected Vero cells. Overall, these results reveal the molecular mechanism underlying aMPV/C infection-induced MAVS degradation by the ubiquitin-proteasome pathway.

Publisher

MDPI AG

Subject

Virology,Infectious Diseases

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3